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Abstract. In Physics, hidden symmetries can either be employed to 

describe special systems and configurations, or even be used as a basic block of a 
theory itself. In this paper, a special hidden symmetry of a physical field 
propagation phenomenon, having strong implications in the interactions theories 
(a classical Fresnel-type image of light propagation) is analyzed. 
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1. Introduction 
 
The role that symmetries play in Physics can be quite different, 

depending on the situation. For example, they can either describe special 
systems and/or configurations, or they can be a cornerstone of a theory itself 
(Cariglia, 2014). For this last case, we can give some examples: the Standard 
Model of particle physics and the General Relativity Theory, with their 
supersymmetric extensions. Another example is string theory, which displays a 
high number of symmetries and dualities. The concept of symmetry can be 
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applied to various domains, such as: relativistic and non-relativistic theories, 
classical and quantum physics etc. Symmetries have been successfully 
employed in Physics to such a degree that, nowadays, a more refined strategy is 
needed. This is the case of General Relativity. In General Relativity the mostly 
used meaning of the word symmetry is associated to that of isometry, i.e., a 
spacetime diffeomorphism that leaves the metric invariant. A one-parameter 
continuous isometry can be put into relation with the existence of Killing 
vectors. Hence, the activity in the area related to using symmetries to solve 
Einstein’s equations or the equations of motion of other systems has been 
focused on finding metrics admitting Killing vectors. This activity has probably 
already reached its maturity. However, other types of symmetries could be used. 
Instead of looking at the symmetries of a spacetime, we can take into 
consideration a physical system evolving in a given spacetime, and thus the 
symmetries of the dynamics of this system can be analyzed. In this context, 
symmetries of the dynamics, for a classical system, involve transformations in 
the whole phase space of the system such that the dynamics is left invariant. 
Instead, for a quantum system, symmetries mean a set of phase space operators 
that commute with the Hamiltonian or with the relevant evolution operator, and 
transform solutions into solutions (Cariglia, 2014). In literature, such 
symmetries are often referred to as hidden symmetries (Krtouš et al., 2008; 
Frolov, 2008). 

In the present paper, we highlight a special hidden symmetry of a 
physical field propagation phenomenon, having strong implications in 
electromagnetic and gravito-electromagnetic-type interactions. In a totally 
particular case, a classical Fresnel-type image of light propagation is obtained. 

 
2. Mathematical Model 

 
Let us consider the propagation equations for a physical field, in the 

compact form (Jackson, 1992; Lechner, 2018): 
 

2 0∂ ∂ − ∂ ∂ =l i t i
l tQ Qα     (1) 

where 
2

2
,  ,  1,2,3

 ∂ ∂ ∂
∂ ∂ = ∂ ∂ = = 

∂ ∂ ∂ 
l t

l tl l
l

x x t
             (2) 

 
and l is the index of summation. In the above relations, lx  is the spatial “l” 
coordinate, t  is the time coordinate, iQ  is the “i“ component of the physical 

field, and 2α  is the inverse square of the physical field propagation velocity in a 
material medium. 



Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 3, 2021                                      57 
 

From (1), by employing the variables separation method in the form 
(Nagle et al., 2018): 

 

( ) ( ) ( ), =i l lQ x t X x T t     (3) 
 
the differential equations systems is obtained: 
 

2 2
2

2
∆

= = −
α λX d T

X T dt
    (4) 

where 
2 2 2

2 2 2
1 2 3

∂ ∂ ∂
∆ = + +

∂ ∂ ∂x x x
     (5) 

 
and λ  is the variables separation constant. 

In this context, we will consider only the differential equation from 
system (4) 

2
2

2 0+Ω =
d T T
dt

     (6) 

where  
2

2  Ω =  
 

λ
α

     (7) 

 
An operational procedure, similar with the one that follows, is also 

functional in the case of the differential equation: 
 

2 0∆ + =λX X       
 
The solution of (6) can be put in the form (Mercheş and Agop, 2016; 

Agop and Păun, 2017; Mazilu et al., 2021; Mazilu and Agop, 2012): 
 

( ) ( ) ( )Ω + − Ω += +θ θi t i tT t he he    (8) 
 

where h  is the complex amplitude, h  is the complex conjugate of h  and θ  is a 
phase. Thus, h , h  and θ  label each entity of a material medium that has, as a 
“fundamental property”, the same Ω .  

A "hidden" symmetry, induced by a homographic group, can be seen in 
Eq. (6). In such a context, the ratio ε  of the two independent linear solution of 
(6) satisfies the standard Schwartz differential equation (Mercheş and Agop, 
2016; Agop and Păun, 2017; Mazilu et al., 2021; Mazilu and Agop, 2012): 
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{ }
2 2

21, 2
2

   = − = Ω   
   

 

 

ε εε
ε ε

dt
dt

            (9) 

2

2,   = = 
ε εε εd d

dt dt
    (10) 

 
The left part of (9) is invariant with respect to the homographic 

transformations 
' +

↔ =
+

εε ε
ε

a b
c d

    (11) 

 
with ,  ,  a b c  and d  and real parameters. Relation (11), corresponding to all 
possible values of these parameters, defines the group SL(2R) (Lang, 2011). 

Thus, a "personal" parameter ε  for each material medium entity can be 
constructed. Indeed, the solution given by (9) becomes a “guide” that can be 
written as 

( )' tan= + Ω +ε θl m t     (12) 
 
It can now be seen that, through ,  l m  and θ , it is possible to 

characterize any material medium entity. Furthermore, by identifying the phase 
from (12) with the one from (8), the “personal” parameter becomes: 

 

( )2' ,   ,   ,   
1

Ω ++
= = + = − ≡

+
θεε ε i th h h l im h l im e

h
              (13) 

 
The fact that (12) is also a solution of (9) implies, by explicating (11), 

the SL(2R) group (Mercheş and Agop, 2016; Agop and Păun, 2017; Mazilu et 
al., 2021; Mazilu and Agop, 2012): 

 

' '
' ',   ,   + + +

= = =
++ +

ε εah b ah b ch dh h
ch dch d ch d

    (14) 

 
Therefore, group (14) works as "synchronization modes" among the 

entities of any material medium.  
The structure of group (14) is a typical SL(2R) one: 
 

[ ] [ ] [ ]1 2 1 2 3 3 3 1 2, ,  , ,  , 2= = = −A A A A A A A A A      (15) 
 

In the previous relations, , 1,2,3=kA k  are the infinitesimal generators 
of the group. Since the group is simple transitive, Ak are the components of the 
Cartan coframe, in the form (Crampin, 2016) 
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( )
( )

( )
1 2 2

2 32

 ∂ ∂ ∂ + + − +  ∂ ∂ ∂∂    = =  
∂ ∂ ∂ ∂ ∂    + + + +    ∂ ∂ ∂ ∂    

∑
ω ε

ε

ω ω

k
k

h h h h
h hfd f dx f

x h h h
h h h h

      (16) 

 

with ω k  the components of the Cartan coframe: 
 

( )1 2 2 3 1 2 2 3 12 ,  2 ,  = + + = + + = −ω ω ω ω ω ω ε ω εdh h h dh h h d h h    (17) 
 
Thus, we can immediately obtain the infinitesimal generators and the 

coframe by identifying the right-hand side of (16) with the standard dot product 
of the SL(2R) algebra 

1 3 2
3 1 22+ −ω ω ωA A A      (18) 

so that 

( )2 2
1 2 3,  ,  ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

ε
ε

A A h h A h h h h
h h h h h h

        (19) 
 

and 
 

( ) ( )
1 2 3,  2 ,  − + −
= = − = +

− − −− −
ε εω ω ω
ε ε

dk dh dh h h d hdh hdh hhd
h h h h h hh h k h h

     (20) 

 
In real terms from (13), these last equations can be written as 
 

( )2 2
1 2 3 ',  ,  2 2∂ ∂ ∂ ∂ ∂ ∂
= = + = − + +
∂ ∂ ∂ ∂ ∂ ∂θ

A A l m A l m lm m
l l m l m

         (21) 

 

 
2 2

1 2 3,  ,  
2 2

+ −
= = − = +

θω ω θ ω θd dm l l m mdl ldmd d
m m m m m

               (22) 

 
It should be mentioned that, in (Barbilian, 1935), the absolute invariant 

differentials are used: 

( )
1 2 3

',  ,  
 +

= = − − = − −−  

ε εω ω ω
ε

dh d dh dh dhi
h h h hh h

                 (23) 

 
or, in real terms, exhibiting a three – dimensional Lorentz structure of this space 
 

1 1 2 3,  cos sin ,  c sin cosΩ = = + Ω = + Ω = − +ω θ θ θ θ θdl dl dm dl dmd
m m m m m

    (24) 
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In this context, a connection with the Poincaré representation of the 
Lobachevsky plane can be found. Indeed, the metric here is: 

 

( )
( )

22 22 1 2
24 4

 +
= − = − + −  −

εω ω ω
ε

ds d dh dh dhdh
g h h h h

             (25) 

or in real terms 
 

( ) ( ) ( )
2 2 22 2 21 2 3

2
+ − = − Ω + Ω + Ω = − + + 

 
θds dl dl dmd

g m m
          (26) 

 
where g is a constant. 

These metrics reduce to that of Poincaré in cases when 2 0=ω  or 
1 0Ω =  which defines the variable θ  as the "angle of parallelism" (in Levi-

Civita sense) of the hyperbolic plane (the connection). In fact, if we recall that 
in modern terms dl dm  represents the connection form of the hyperbolic plane, 
relations (24) then represent a general Bäcklung transformation in that plane 
(Darling, 1994). 

The symmetry written above highlights the form: 
 

2

1 2 3 2,  ,  
1 1 1
+ + +

= = =
+ + +

ε ε ε
ε ε ε

h h h wh h w hy y y
w w

  (27) 

 
of the real roots of the cubic: 
 

a0y3 + 3a1y2 + 3a2y + a3 = 0 
                                   a0, a1, a2, a3 ∈R (28) 

 
where h  and h  are the roots of Hessian 
 

( ) ( ) ( )2 2 2
0 2 1 0 3 1 2 1 3 2 0− + − + − =a a a y a a a a y a a a    (29) 

 
and ( )1 3 2= − +w i  is the cubic root of the unit, different from the unit itself 

(Mercheş and Agop, 2016; Agop and Păun, 2017; Mazilu et al., 2021; Mazilu 
and Agop, 2012). Taking into account that relations (27) can always be put into 
relation with the eigenvalues of a second order tensor, it results that this tensor 
could characterize the physics of the phenomenon described by the differential 
(1). To this end, let us admit that this tensor ijw  has the form (Mazilu and Agop, 
2012):  
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= +ij ij ijw u vλ µ          (30)  
 

where λ  and µ  are real parameters describing the extent to which the analyzed 
physical phenomenon is "spatial" and, respectively, "material". The matrices u 
and v can be defined through 
 

2 2

2 2 2 2 2 2 2 2
1 2 3 1 2 3

1 1;
2 2

;
= − = −

= + + = + +
ij i j ij ij i j iju u u u v v v v

u u u u v v v v
δ δ

   (31) 

where ijδ  is Kronecker's pseudo-tensor. When detailed, matrix (30) becomes 

    2 21( )
2

= + − +ij i j i j ijw u u v v u vλ µ λ µ δ    (32) 

 
We want to highlight now that this tensor has three main real and 

distinct eigenvalues. Indeed, its orthogonal invariants are 
 

    2 2 2 2
1 2 3;  ;  ( )= − = − + = − −I e I e g I e e g    (33) 

where we have used 
2 21( );  ( )

2
≡ + ≡ ×

  e u v g u vλ µ λµ            (34) 

Using the standard approach, the main values of the tensor ijw  can be 
obtained as roots of the matrix's characteristic equation: 

 

   2 2
1 2,3,  = = ± −w e w e g    (35) 

 
The pair from equation (34) is one of the own vectors of w, together 

with its own value. The other two own vectors of w are perpendicular, and they 
are located in the planes of vectors 

u  and 
v . 

The magnitudes 
 

2 2 2 21 2 3
2 3 3 1 1 2

1,  [( ) ( ) ( ) ]
3 15

+ +
= = − + − + −n t

w w w
w w w w w w w w     (36) 

 
are the Novojilov averages for the normal and shearing components of the w 
tensor in any given point (Novojilov, 1952).  
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In the following, let us define the vector formed by the w matrix 
eigenvalues: 

     
1

2

3

 
 
 
 

≡  
 
 
  
 

w
w w

w
                 (37) 

Now, by choosing the octahedral plane with a normal given by the 
unitary vector 

      
1

1 1
3 1

 
 
 
 

≡  
 
 
  
 

n                    (38) 

the normal component nw  on this plane is 
 

    1 2 3

3
+ +

≡
w w w

n w                      (39) 

 
Another quantity in (36) is the vector's norm: 
 

   
1 2 3

1 2 3

1 2 3

2
1 2
3

2

 
 
 − −
 

≡ − = − + − 
 − − + 
  
 

t

w w w
w w n n w w w w

w w w
  (40) 

 
After a simple calculation, we obtain: 
 

      21
5

≡t t tw w w    (41) 

 
For a particular case of eigenvalues (35), the two magnitudes can be 

written: 
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  2 2

2 2

2
2 2,  3

33
3

 
 
 −
 
 ≡ = − = − +
 
 − − +
 
 
 




n t

e

w w n e w e g e

e g e

     (42) 

In this context, taking into account the previous relations, the following 
calculations referring to the normal and shearing component in a particular 
point in space, are obtained: 

     2 2
2

1 2, 1
33 1

 
 
 
 

= − = − 
 − 
  
 

tnξ ξ ξ ξ       (43) 

When vector 

ξ  is perpendicular both on 

u  and on 
v , the tensors w and 

ξ commute. In this case, the direction of the vector in (43) is fixed and can be 
taken as reference in the octahedral plane. The angle ψ  of the vector in 
equation (42) is given by: 

     
2 2

cos
4 3

= −
−


e

e g
ψ     (44) 

 
It results that, in these conditions, ψ  is independent of the reference 

vector, and depends only on the description of the physical propagation 
phenomenon. By appropriately choosing a sign of the square root in the 
denominator of this formula, the origin 0=ψ  of that angle appears at =e g . In 
its turn, this condition means that the angle θ  between vectors 

u  and 
v  is 

given by the equation 

      
2 21sin

2
+

=
u v

uv
λ µθ

λµ
                                   (45) 

 
As the quantity on the right-hand side of this equation is always greater 

or equal to one, the angle between vectors 
u  and 

v  can only be 90°. Therefore, 
the initial condition of the w tensor in the octahedral plane translates into the 
fact that vectors 

u  and 
v  are perpendicular on each other, and their plane is 
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perpendicular on vector 

ξ . In a particular case, if this last vector is given by the 

direction of a light beam, we can obtain the classic image of light propagation 
according to Fresnel (Fresnel, 1827). 

 
3. Conclusions 

 
In this paper, we developed original methodologies, based on 

operational procedures (group invariances, variational principles etc.), for 
describing the dynamics of physical systems.    
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O SIMETRIE „ASCUNSĂ” ȘI UNELE IMPLICAȚII 
 

(Rezumat) 
 

Simetriile „ascunse” pot fi folosite în fizică pentru a descrie sisteme și 
configurații speciale, sau chiar pentru a construi „temelia” unei noi teorii. În prezenta 
lucrare se analizează o simetrie ascunsă a unui fenomen de propagare a unui câmp fizic, 
ce are implicații puternice în teoriile de interacții (o imagine clasică de tip Fresnel a 
propagării luminii). 

 


